

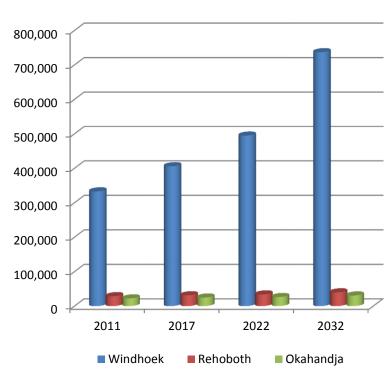
Nachhaltige integrierte Stadtund Verkehrsplanung in Afrikanischen Städten am Beispiel Windhoek, Namibia

Dr.-Ing. Carsten Schürmann Dr. Niklas Sieber TCP International

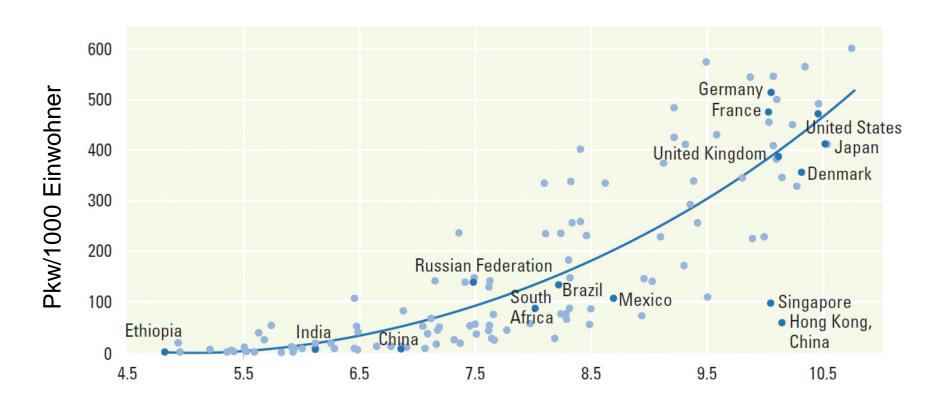
DECOMM 2014Köln, 13.03.2014

Inhalt

- Planerische Rahmenbedingungen für Städte in Entwicklungsländern
- Integrierte Stadt- und Verkehrsplanung in Windhoek
- Wirkungen der Maßnahmen
- Schlussfolgerungen


Planerische Rahmenbedingungen für Städte in Entwicklungsländern

Städte im Entwicklungsprozess


- Weltweiter Trend zur Urbanisierung
- Rapides Bevölkerungswachstum der Städte (Afrika 3.8% p.a.)
- Steigender Wohlstand, insbesondere in den Städten
- Bislang Fokus auf Mega-Cities, aber: Mittelstädte haben großes Potential für Verbesserungen

Bevölkerungsprognose für Windhoek, Namibia

Wohlstand und Autobesitz 2000

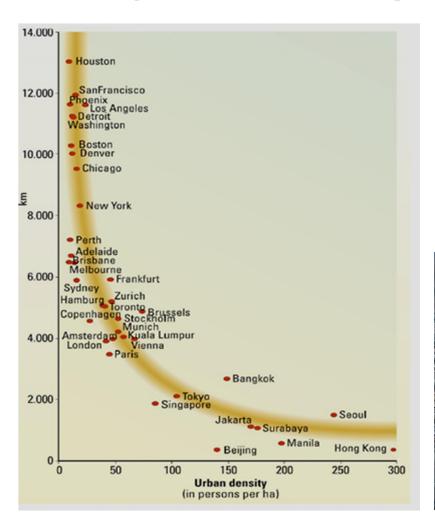
Log BIP/Kopf in US\$ (2000ppp)

Siedlungsdichte und urban sprawl

Mumbai: 8.3 m inhabitants

Cairo: 8.9 m inhabitants

Los Angeles 8.4 m inhabitants



Entwicklungsweg Afrikas?

Quelle: Sieverts 1997

Wirkungen des Urban Sprawl auf den Verkehr

Niedrige Siedlungsdichten verursachen

- Lange Wegstrecken
- Hohe Verkehrsarbeit
- Schlechte Bedienung mit dem ÖPNV

Urban Sprawl in Afrikanischen Städten

- Informelle Siedlungen
- Enorme Zersiedlung, lange Wege
- Wohnbereiche, kaum Arbeitsplätze
- Kaum Infrastrukturen (Wasser, Strom, Abwasser, Einkauf, öffentl. Einricht-ungen, ...)
- Verkehrliche Erschließung: zu Fuß, Sammeltaxis, kaum ÖPNV, kaum Pkw, kaum Fahrräder

Ziel: Verkehrsvermeidung durch Siedlungsstrukturplanung

• Integrierte Verkehrs- & Flächennutzungsplanung

- Siedlungsstrukturen und Verkehrsanbindung
- Berücksichtigung aller Verkehrsträger
- Nachhaltige Flächennutzungsplanung

Reduktion der Weglängen

- nicht motorisierter Verkehr ermöglichen
- geringere Verkehrsarbeit (Pkm)

Schaffung ÖV-affiner Siedlungsstrukturen

- Siedlungsverdichtungen
- Punkt-achsiale System
- Transit Oriented Develoment TOD

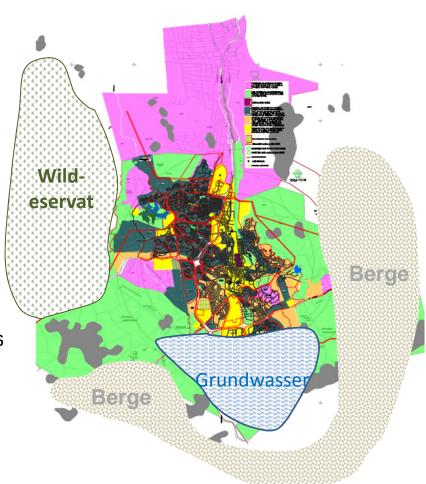
Leitgedanken

INCLUSIVE AND SUSTAINABLE TRANSPORT SOLUTIONS

AVOID SHIFT IMPROVE

Integrierte Stadt- und Verkehrsplanung in Windhoek

Strukturelle Rahmenbedingungen


- Einwohnerzahl: heute 330.000, verdoppelt sich in 20 Jahren
- BSP Wachstum pro Kopf:
 3 4,5% p.a.
- Pkw für die Oberschicht:
 48 % HH kein Zugang zu motorisierten VM
- Ungenügender ÖV:
 Dominanz Taxiindustrie
- Fahrräder für viele HH unerschwinglich
- Hohe Unfallraten
- Starke soziale Disparitäten

Planerische Rahmenbedingungen

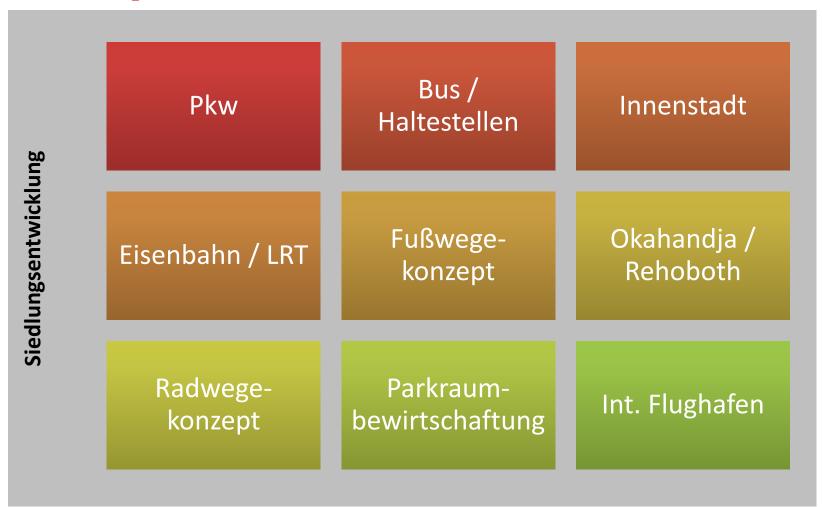
- gültiger Strukturplan (=FNP) datiert noch aus Mitte der 1970er Jahre
- Letzte Verkehrsentwicklungsplan 20 Jahre alt, berücksichtigte nur Pkw
- Mangelhaftes Busangebot
 - Wenig Linien, nicht vertaktet, nicht integriert
 - Verkehren nur morgens & Abends
 - Teuer im Vergleich zu Sammeltaxis
 - Keine Fahrplaninformationen
 - Haltestellen oft demoliert
 - Schlechts Image
- Fahrrad spielt noch keine Rolle

Flächenverbrauch durch extensive Ansiedlung von Neubürgern

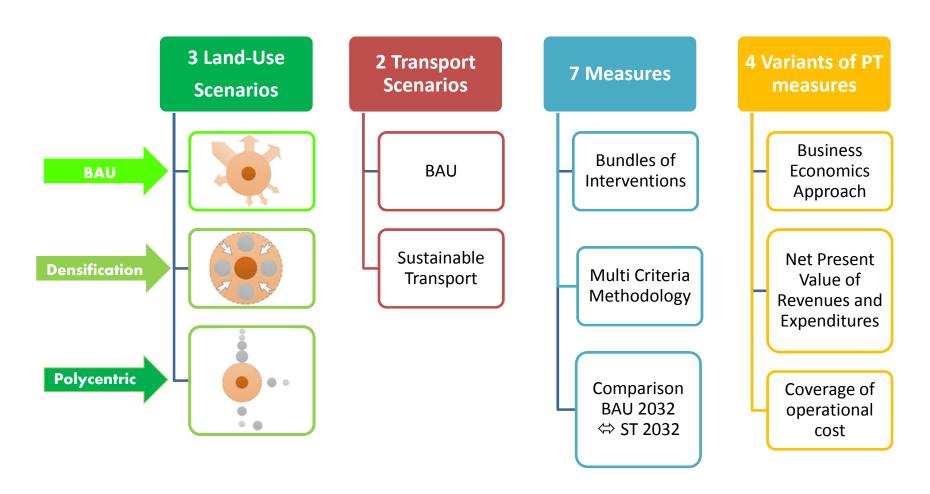
Soziale Rahmenbedingungen des Verkehrs

Ca. 87% der Bevölkerung mit geringem Einkommen, können sich keinen Pkw leisten

Durchschnittlich geben sozial schwache Haushalte 24% ihres verfügbaren Einkommens für Mobilität aus

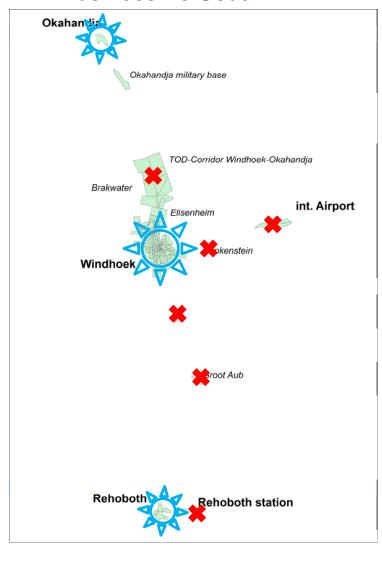

52% der unteren Einkommensgruppen können sich auch kaum öffentlichen Verkehr leisten, da es mehr als 50% ihres Einkommens ausmacht.

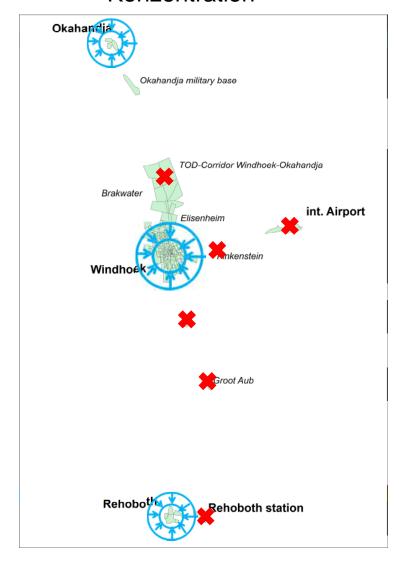
Daher ist nicht-motorisierter Verkehr des bevorzugte Verkehrsmittel für 87% der Bevölkerung, vornehmlich zu Fuß, da Fahrräder für viele HH unerschwinglich



Konzeptbausteine

Szenarien Entwicklung

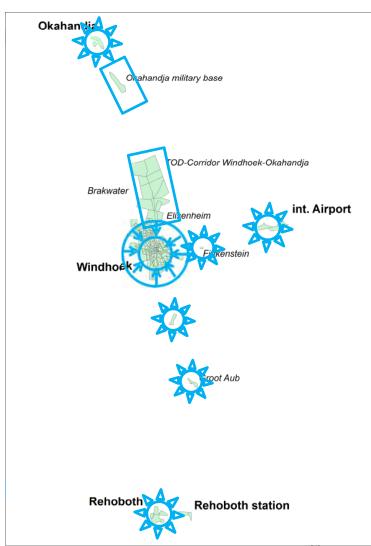




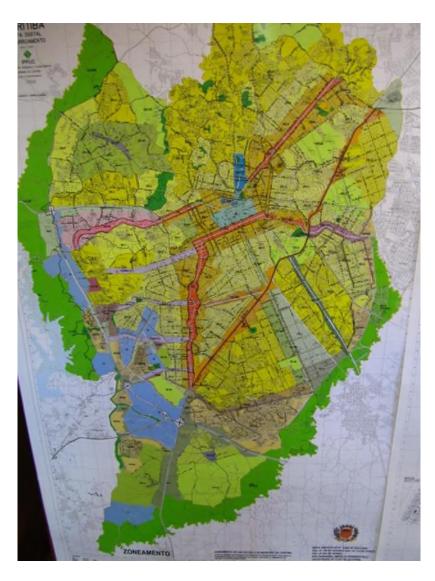
Szenarien zur Siedlungsstruktur

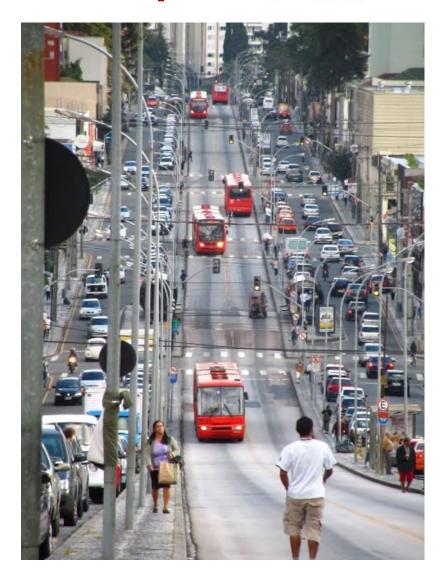
Business As Usual

Konzentration

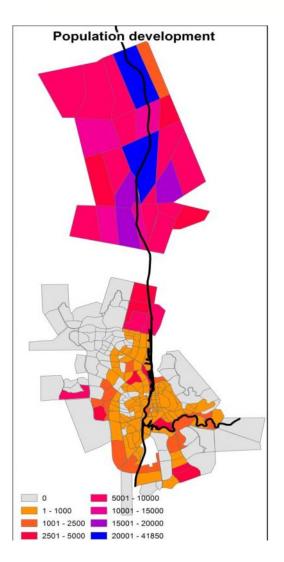

Vergleich der Szenarien

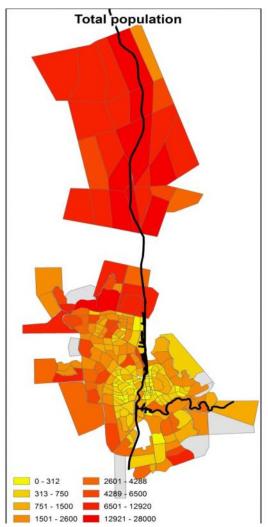
	A: BAU	B: Densification	C: Polycentric	
Zeit in Verkehr	3-4 > Scenario B	3-4 < Scenario A	1-2 > Scenario B	
Erreichbarkeit ÖV	< 15% Bevölkerung weniger als 15 min zum nächsten ÖPNV	>80% Bevölkerung weniger als 15 min zum nächsten ÖPNV	> 60% Bevölkerung weniger als 15 min zum nächsten ÖPNV	
Externe Kosten	3x so hoch wie in kompakten Stadtstrukturen	nur 1/3 von Scenario A	n/a	
Pro-Kopf Spritverbrauch	60.000 – 80.000 I	2.000 – 10.000 l	15.000 – 40.000 l	
Pro-Kopf Pkw- Benutzung (km)	12.000 – 14.000 km	1.000 – 4.000 km	6.000 – 8.000 km	
Modal split ÖPNV	3 – 10 %	40 – 60 %	20 – 40 %	
Modal split NMT	0 – 5 %	10 – 40 %	10 – 30 %	

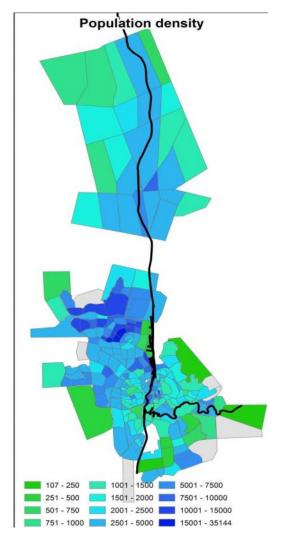

Dezentrale Konzentration


- Moderate Verdichtung innerhalb Windhuks
- wo immer mögllich, gemischte Siedlungsstrukturen,
- Entwicklung von polyzentrischen Wachstumspolen im Umland von Windhuk.
- Korridorentwicklung (TOD) Richtung Norden nach Okahandja, welche den Großteil des Bevölkerungswachtstums aufnimmt.
- Starker Fokus auf Transitkorridor Richtung Norden mittels hochwertigem ÖV.
- Weitere kleinere polyzentrische Entwicklungsknoten außerhalb Windhuks, die gut mit ÖV angebunden werden.
- Restriktive Entwicklung in anderen Teilen der Hauptstadtregion.

Transit Oriented Corridor: Beispiel Curitiba

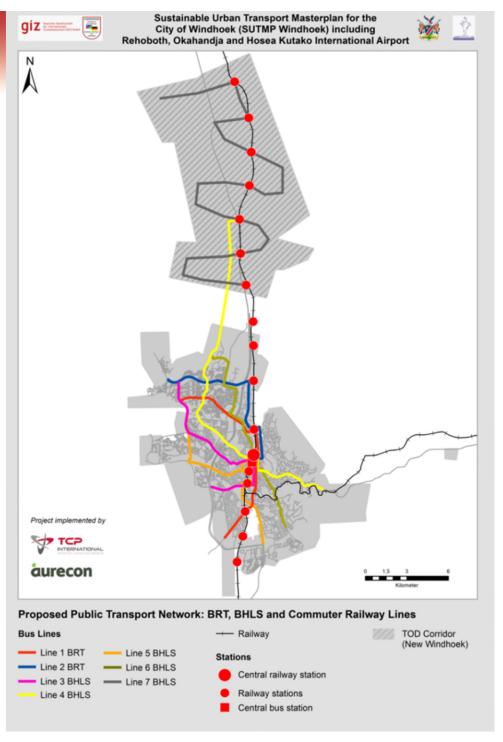





Einwohnerentwicklung

Bevölkerung

Dichte

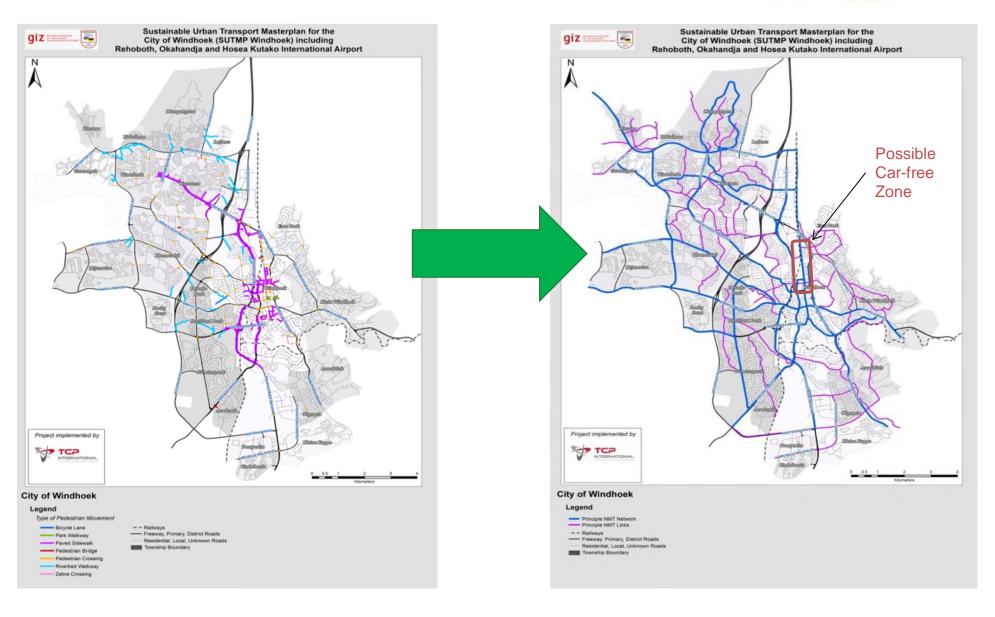


Geplantes ÖV- Netz

- Integriertes, hierarchisches Liniensystem (BRT, BHLS)
- Neue Linienführung, Verdichtung der Linien und Haltestellen
- Zeitl. Ausdehnung des Betriebs
- Verdichtung der Takte
- Umsteigebeziehungen
- Verbesserung o/d-Beziehungen (Nachfrageorientiert)
- Anschaffung neuer Fahrzeuge
- Umfangreiche Investitionen in Haltestellen
- Imagekampagne
- Priorisierung

Integration der Taxiindustrie

- Einbindung der Taxi/Minibus-Betreiber in das ÖV-System (Anteilseigner, Zubringerdienste)
- Optimierung der Taxistandorte sowie der Zonengliederungen für die Taxibetreiber
- Fahrzeugerneuerungsprogramm (sparsamere u. lärmarme Fahrzeuge)
- Verbesserung der Lizenzierungsbedingungen und der Ausbildung
- Verlängerung des Fahrzeitenfenster
- Verbesserter Zugang für Menschen mit Behinderungen
- Einrichtung von speziellen Bus-/ Taxispuren auf Hauptstraßen


NMV – Momentane Situation

Verbesserung des Nicht Motorisierten Verkehrs

Standards der Straßenraumgestaltung

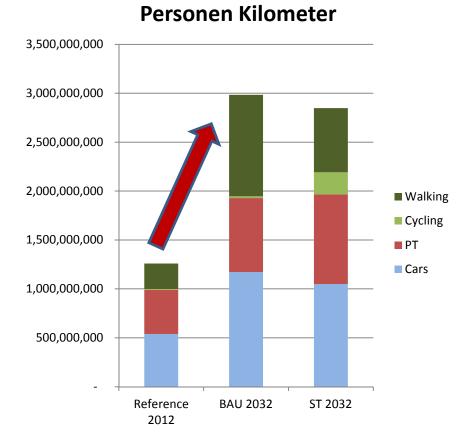
- Bauliche Reduktion der Geschwindigkeiten
- Verschiedene neue Designs für verschiedene Straßenkategorien
- Schaffung unabhängiger Radund Fußwege entlang von Hauptstraßen
- Reduzierung der zulässigen Höchstgeschwindigkeiten

Parkraum Management

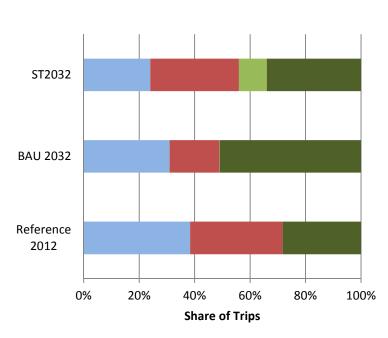
Begleitende Maßnahmen

- Beteiligungsprozess: "Move Windhoek" http://www.facebook.com/movewindhoek
- Road Design Standards
- Institutionen
- Capacity building
- Verkehrssicherheit
- Ausschreibung
 Innenstadtentwurf

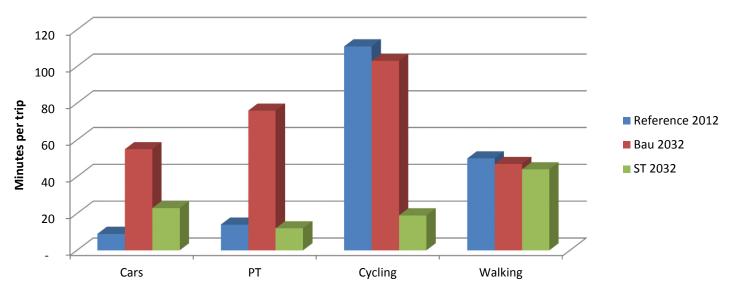
Enwicklungsszenarien


Referenzfall 2012

Business as Usual 2032 = BAU 2032

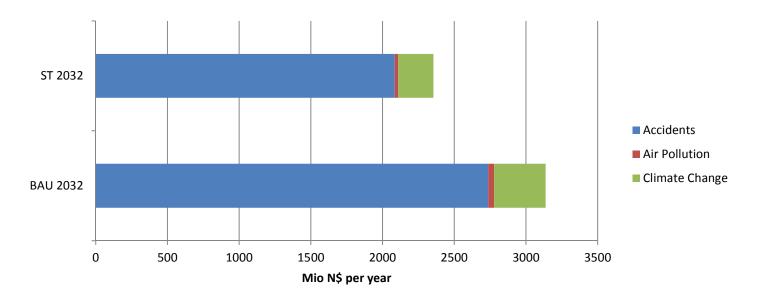

Nachhaltiger Verkehr 2032 = SUTP 2032

Verkehrliche Wirkungen


Modal Split

Verkehrliche Wirkungen

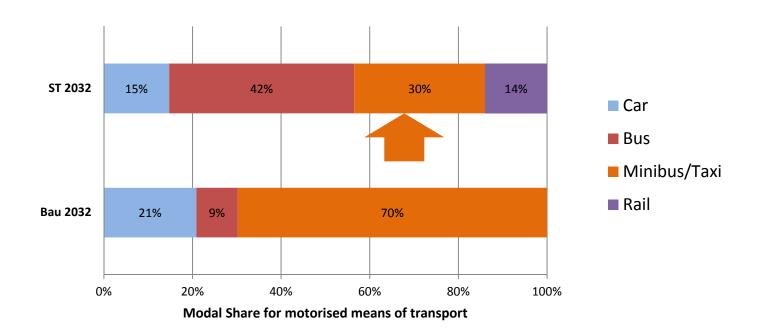
Reisezeit pro Weg [Minuten]



- Enorme Zunahme der Stauungen im BAU2032
- Abnahme der Stauungen durch Maßnahmen im ÖV und NMV
- Insgesamt aber starke Zunahme der Wege aufgrund hoher Bevölkerungszunahme

Umweltwirkungen

Externen Kosten des Verkehrs 2032



- Weniger Verkehrsunfälle: 122 weniger Verkehrstote, 520 Schwerverletzte, 930 Leichtverletzte pro Jahr
- Klimawandel:
 150.000 Tonnen weniger CO2 Emissionen pro Jahr.

Wirkungen auf arme Haushalte

- Umsteigen von Taxi zu ÖV
- Einsparungen von ca. 2.000 N\$ (200€) pro Jahr für jeden armen Haushalt

Volkswirtschaftlicher Nutzen

 4.3 bn N\$ (400 m €) jährliche Einsparung bei vollständiger Programmimplementierung, aufgrund reduzierter Fahrzeugkosten, Zeitersparnisse, verändertem Modal Split, und geringeren externen Kosten

Million N\$	Period	Investments	Benefits
Investments PT, NMT, Road Design	20 years	4.462	
Reduction VOC	p.a.		-1.324
Reduction Congestion Costs	p.a.		-2.183
Reduction External Costs	p.a.		-783
Total	p.a.	223	-4.290

- Schaffung von ca. 12.000 neuen Arbeitsplätzen
- 5-6% Steigerung der Wachstumsrate in der Region um Windhoek

Schlussfolgerungen

- Verkehr und Siedlungsstruktur wichtiges Steuerungsinstrument für nachhaltige Verkehrsplanung.
- Durch starkes Städtewachstum in Entwicklungsländern besteht ein enormes Potential.
- Kleine und Mittelstädte sind ebenso wichtig wie Megacities, aber die Umsetzung ist einfacher.
- Integrierte und systemdynamische Betrachtung ist notwendig.
- Einbindung aller gesellschaftlichen Kräfte in die Planung.

